
1

Packing Vertex Data into
Hardware-Decompressible Textures

Kin Chung Kwan, Xuemiao Xu, Liang Wan, Tien-Tsin Wong, and Wai-Man Pang

Abstract—Most graphics hardware features memory to store textures and vertex data for rendering. However, because of the
irreversible trend of increasing complexity of scenes, rendering a scene can easily reach the limit of memory resources. Thus, vertex
data are preferably compressed, with a requirement that they can be decompressed during rendering. In this paper, we present a novel
method to exploit existing hardware texture compression circuits to facilitate the decompression of vertex data in graphics processing
unit (GPUs). This built-in hardware allows real-time, random-order decoding of data. However, vertex data must be packed into
textures, and careless packing arrangements can easily disrupt data coherence. Hence, we propose an optimization approach for the
best vertex data permutation that minimizes compression error. All of these result in fast and high-quality vertex data decompression
for real-time rendering. To further improve the visual quality, we introduce vertex clustering to reduce the dynamic range of data during
quantization. Our experiments demonstrate the effectiveness of our method for various vertex data of 3D models during rendering with
the advantages of a minimized memory footprint and high frame rate.

Index Terms—vertex data compression, real-time rendering, hardware texture compression, permutation, GPU acceleration

F

1 INTRODUCTION

W ITH the increasing demand for ultra-realistic rendering
of game scenes, the number of 3D objects, textures, and

vertex data to be stored in the memory of a graphics processing
unit (GPU) is frequently enormous. A real-time game scene often
has a number of small-scale 3D objects (hundreds to thousands of
polygons each, shown in Fig. 1) rendered. Increasing the number
of objects presented in a game improves the richness of the game
content, and increasing the mesh resolution of each object reduces
unpleasant polygonal artifacts. The trade-off for such increases is
obviously an increase in storage requirements. Although modern
GPUs support hardware encoding of textures, storing, and direct
decoding of compressed textures in GPU memory for real-time
rendering, vertex data are seldom stored in GPU memory in
compressed form because no hardware circuit is tailored for real-
time decoding.

Although geometry compression methods [2], [3], [4] can
effectively compress meshes, they are not designed for the real-
time rendering demands of game applications. For real-time ren-
dering, the mesh may be accessed in a random order (random-
accessibility) because of the arbitrary viewing angle. Note that
many existing geometry compression methods can decode vertex

• K.C. Kwan is with Department of Computer Science and Engineering,
The Chinese University of Hong Kong and School of Computing and
Information Sciences, Caritas Institute of Higher Education. E-Mail: kck-
wan@cse.cuhk.edu.hk

• X. Xu is the corresponding author with the South China Univer-
sity of Technology and The Chinese University of Hong Kong. E-
Mail: xuemx@scut.edu.cn

• L. Wan is with School of Computer Software, Tianjin University and De-
partment of Computer Science and Engineering, The Chinese University
of Hong Kong. E-Mail: lwan@tju.edu.cn

• T.-T. Wong is with Department of Computer Science and Engineering,
The Chinese University of Hong Kong and Shenzhen Key Laboratory
of Virtual Reality and Human Interaction Technology, Shenzhen Insti-
tutes of Advanced Technology, Chinese Academy of Sciences, China. E-
Mail: ttwong@cse.cuhk.edu.hk

• W.-M. Pang is with School of Computing and Information Sciences,
Caritas Institute of Higher Education. E-Mail: wmpang@ieee.org

(a) Original (b) Wireframe (c) Our compressed result

Fig. 1: An example of a simple 3D model (284 polygons) in game
applications. The result in (c) has a compression ratio of 1:7.

data only in sequential order. Moreover, if the mesh is stored in
a compressed form in GPU memory and decoded only when it is
displayed, a decoding speed of at least 30 fps is required for real-
time purposes. Although modern GPUs are programmable (shader
programming [5] or GPGPU [6]), achieving such a decoding speed
is challenging because of the complexity of decoding methods.

In this paper, we mainly focus on the compression of vertex
data, which refers to vertex attributes, including vertex positions,
normals, and texture coordinates. We propose a method to store
compressed vertex data in GPU memory and allow real-time,
random-order decoding of vertex data for game applications.

Our key idea is to exploit the existing hardware compression
functionalities of ordinary GPUs. The basic idea is to store the
vertex data in textures and utilize the texture compression hard-
ware on the GPU to achieve real-time decoding. However, naı̈vely
compressing the vertex data with texture compression results in
unsatisfactory results (Fig. 2(c)) because of the inconsistency of
the data structure. Whereas vertex data have a graph structure,
texture data have a grid structure. Texture compression utilizes the
data coherence among neighboring texels for effective compres-
sion. Naı̈vely packing the graph vertex data into texture disrupts
the data coherence and reduces compression effectiveness.

To increase data coherence, we propose to permute the vertex
data packed in the textures using an optimization approach. By

2

(a) Original (b) Purnomo et al. [1] (c) Without permutation (d) Our result

Fig. 2: The rendering results for a 3D model with position data compressed. All methods here use 12 bpv.

minimizing a global error metric, we obtain an optimal per-
mutation that drastically improves the visual quality. To further
improve the visual quality, we propose a clustering approach to
reduce compression error. We demonstrate the effectiveness of
our vertex data permutation by compressing positions, normals,
and texture coordinates. In all experiments, we achieve real-time
performance using the hardware texture decompression ability of
modern GPUs.

2 RELATED WORKS

Geometry compression is a popular method of reducing geometry
size. Deering [7] was the first to introduce the concept of geometry
compression, and his algorithm sequentially encodes (decodes) the
offsets between successive vertices in a vertex array. Although
his decompression algorithm [7] [8] is designed for hardware
implementation, his sequential decoding process cannot be par-
allelized on a GPU. Touma and Gotsman [9] coded a mesh using
a parallelogram predictor. Isenburg [10] followed this idea and
improves the compression ratio by predicting the vertex degree.
Vasa and Brunnett [11] further improved the idea using a weighted
parallelogram predictor. Again, their methods require sequential
processing and hence cannot fit into the regular rendering pipeline.

Progressive compression methods [2] [3] [4] compress mul-
tiresolution models, but their recursive approaches are not GPU-
friendly. Hao and Varshney [12] proposed to compress geometry
by reducing the data precision of each graphical primitive being
rendered. However, the different precisions of different vertices
complicate implementation on the GPU. Gu et al. [13] remeshed
3D surfaces onto geometry images and compressed these images
using wavelet-based coders. Praun and Hoppe [14] followed this
idea and remeshed the 3D surface onto spheres. Rodrı́guez et
al. [15] remeshed the object surface into tetrahedra. Their repre-
sentation directly exploits an existing image or video compression
technique. However, their method requires a sequential mesh
reconstruction process during decompression and therefore cannot
be fully parallelized on a GPU.

Spectral techniques [16] partition the mesh into manageable
and local submeshes, and each submesh is then represented as
a compact linear combination of orthogonal basis functions. All
vertices on the same submesh or patch must be decompressed si-
multaneously, and thus they are not randomly accessible. However,
random access is a critical requirement for our problem.

Although several existing techniques are partially accelerated
using GPUs, they cannot be fully parallelized because part of the
procedures must be performed sequentially. Therefore, they are
inefficient if the data are decompressed purely in the GPU and
still require data decompression in a CPU before transmission
for rendering (Fig. 3). Although these methods achieve higher

compression ratios or better quality, they are not suitable for our
problem.

Schnabel et al. [17] decomposed point-cloud data into primi-
tive shapes and represented them as height-fields. The decomposi-
tion makes it difficult to handle complex connectivity data. Meyer
et al. [18] parameterized the surface normal onto an octahedron
for compression. However, this method is applicable for com-
pressing normals only. Gobbetti et al. [19] partitioned the mesh
into quadrilateral patches and performed parametrization on each
patch. However, their method assumes that the input is a single
manifold mesh instead of multiple disconnected objects (e.g.,
game scenes).

Other methods such as 3D Mesh Coding (3DMC) [20] use a
triangle strip compression scheme to encode connectivity. Triangle
Fan-based compression (TFAN) [21] follows this idea and exploits
the concept of a triangular fan. However, it mainly focuses on
connectivity data, even as it simply quantizes the vertex data for
compression. Grouper [22] aggregated the triangles to represent
the connectivity data in a compact form. However, the vertex data
are still stored in uncompressed plain form.

In contrast to previous methods, our approach does not rely on
specific hardware or a complex vertex shader. Instead, we exploit a
common compression technique in graphics hardware to compress
vertex data. This makes our approach easy to implement, efficient,
and effective for decompression on the GPU only. In other words,
we can reduce the memory usage in graphics hardware to suit
more or larger 3D models. Furthermore, our approach makes no
assumption about connectivity; it can accommodate nonmanifold
meshes or even a polygon soup. Because of the data structure
of connectivity, we can randomly access the compressed data for
real-time rendering (Fig. 3).

Several techniques share a similar intention as ours by attempt-
ing to store compressed data in GPU memory. Calver described
the basic principles for decoding quantized vertex attributes in a
vertex shader [23] [24]. Purnomo et al. [1] followed this idea and
implemented a vertex data decoder on graphics hardware. Their
method automatically allocates the number of bits to each vertex
attribute and globally quantizes all vertex data. Lee et al. [25]
proposed performing local quantization after mesh partitioning. A
more comprehensive survey of mesh compression can be found in
the work of Maglo et al. [26].

Other techniques related to our permutation are the mesh
layout [27] or partitioning [28] for cache-efficient access. Because
the neighbors of recently accessed data are prefetched, the next
access is preferably to nearby data in order to access the cache.
Thus, cache-efficient methods mainly focus on the coherence of
the access order of data. However, the access order is not related to
the texture compression error. Hence, their methods do not address
the reduction in the compression error as we do.

3

Fig. 3: The data flow for rendering using different methods. The
green boxes represent compressed data.

3 BACKGROUND

3.1 Rendering on Hardware

To render 3D objects with graphics hardware, vertex data must be
transmitted from the CPU to the GPU. Because of the limited
bandwidth between the CPU and the GPU, data are usually
preloaded into GPU memory for quick access. As the vertex data
alone do not define the connectivity of a 3D object, an additional
array (i.e., facelist) is required to render the 3D objects. This
facelist, which references the preloaded vertex data on the GPU,
can either be stored in GPU memory or sent to the GPU in a
streaming manner for rendering. This vertex-face structure is the
most widely used mesh representation for real-time rendering.

Although preloading can greatly reduce the data transmission
to the GPU, it demands significantly more GPU memory space
because the preloaded vertex data are stored in raw and uncom-
pressed form. Although each 3D object in a game scene may not
be large in size, it is still impossible to upload all 3D objects
simultaneously to the GPU memory as its capacity is limited. It
is natural to consider compressing these data to regain memory
space on the GPU for uploading more data. To avoid significantly
affecting the rendering speed, we require that decompression be
performed purely on the GPU and in a random-access manner
for real-time rendering of the compressed vertex data (Fig. 3).
To accommodate these requirements, our idea is to exploit the
existing hardware texture compression functionality of ordinary
GPUs.

3.2 Compression on Hardware

Nearly all GPUs have built-in circuits for different hardware
texture compression methods, including 3Dc [29], S3 Texture
Compression (S3TC) [30], and Block Partitioned Texture Com-
pression (BPTC) [31]. Our goal is to exploit this hardware decom-
pression to solve our problem.

We believe most block-based hardware texture compression
methods should work well in our method. However, most of these
methods do not have the flexibility for choosing the geometry pre-
cision or bit per vertex (bpv). Therefore, the selection of hardware
texture compression can significantly affect the compression ratio
of the final result. In this paper, we use 3Dc as an example for
our experiments. 3Dc is a 4 × 4 block-based hardware texture
compression using quantization. Its block structure allows 3Dc to

Fig. 4: The framework of our system.

be parallelized on the GPU hardware and randomly accessed. 3Dc
stores the maximum and minimum values using 8 bits each and
represents each data value in the block with 3 bits. Therefore,
3Dc can use 64 bits to represent 16 values in one block for
one-dimensional data. In other words, one 3D datum (e.g., vertex
position) can be represented by 12 bits (12 bpv).

Although 3Dc is a relatively old technique and is designed
for normal mapping, it meets our needs for vertex data com-
pression on the GPU. Experimental results show that our method
reconstructs high-quality vertex data for rendering. Note that our
method is not limited to a specific compression technique. Higher
performance can be achieved if a better hardware compression
technique (if it exists) is applied. However, naı̈vely compressing
the vertex data with texture compression has unsatisfactory results.
Thus, we propose a permutation approach to reduce the compres-
sion error.

4 OUR FRAMEWORK

Fig. 4 shows our framework. Our system mainly involves four
steps: data packing, permutation, encoding, and decoding. The first
three steps are performed only once to preprocess the vertex data,
whereas the last step runs simultaneously with real-time rendering.

a) Data Packing: To utilize the built-in hardware texture
compression, we must pack the vertex data into 2D texture. To
do so, we put one vertex data into one pixel of a texture. When
multiple attributes are available in vertex data (e.g., position
and normal), each attribute can be stored in different textures.
Therefore, vertex data are tightly packed into the texture regardless
of their connectivity. Multiple disconnected meshes can also be
packed into the same texture (e.g., objects in the scene in Fig. 12).
To refer to the vertex data in textures, we rely on texture coordi-
nates (u, v), which are stored in the facelist (connectivity data).
In contrast to the geometric image [13], which also packs mesh
into an image, our method does not require any parameterization,
which may introduce additional errors.

b) Permutation: The quality of texture compression decidedly
depends on data coherence in the texture. However, vertices
in mesh are graph-natured, whereas pixels in texture are grid-
natured. Naı̈vely packing vertex data into texture reduces the data
coherence and generates unsatisfactory results (e.g., Fig. 2(c)). To
increase data coherence in the packed vertex data, we permute the
data in texture. More details are discussed in Section 5.

c) Encoding and Decoding: Once the vertex data are packed
and permuted in textures, we can compress them easily by invok-
ing the hardware API. The decompression can be performed on
the GPU with a simple vertex shader during rendering. We first
upload the necessary elements to the vertex shader. In the shader,
we directly access the corresponding data in a compressed texture
via a texture lookup function. This function automatically triggers
the GPU hardware texture decompression mechanism and decom-
presses the data in a random-access manner instantaneously. This

4

results in an immediate and data-on-demand decompression of
vertex data at the time of rendering. This process does not require
a huge memory footprint for caching intermediate decompressed
data.

5 PERMUTATION

Naı̈vely packing vertex data in textures introduces a number of
compression errors (e.g., Fig. 2(c)) because of the lack of data
coherence. To reduce such errors, we perform optimization by
permuting the vertex data in the texture. This idea is analogous to
cache-efficient methods [32] [33]. However, such methods rely on
a static access order of the vertex for permutation. In our case, the
data may be randomly accessed in a dynamic order in different
frames because in real-time applications, the scenes are dynamic.
Thus, cache-efficient methods cannot be directly applied to our
problem.

The following sections define an error metric to evaluate a
given arrangement of the vertex data to guide the optimizer to
seek the best permutation for vertex data.

5.1 Attribute-Space Error Metric

In general, errors for vertex compression can be measured in
two different spaces: image space [1] [34] or attribute space [35]
[36]. An image space metric compares the rendering results of
the altered model and the original model with multiple camera
angles and lighting conditions, which can be too computationally
expensive for optimization processing. In our system, we use an
attribute-space metric for our metric.

Our compression involves vertex data only. It does not affect
the connectivity (i.e., facelist). Therefore, we simply evaluate
errors based on the root mean square error (RMSE) between the
original vertex and the decompressed vertex data. Therefore, our
metric to measure compression error is defined as

ei(p) =
M∑
j=1

‖ qij(p)− q̂ij(p) ‖2,∀ i ∈ {1, . . . , N} (1)

where p denotes the current arrangement of the vertex data textures
and the indices i and j represent the i-th block and j-th dimension,
respectively. M and N are the total number of dimensions and
blocks of texture, respectively. qij(p) is the value of the attribute
of the original vertex data. q̂ij(p) represents the counterpart in
the reconstructed data. The operator ‖ · ‖ computes the 2-norm.
Therefore, the average compression error E(p) is calculated as

E(p) =
1

NBM

√√√√ N∑
i=1

ei(p) (2)

where B is the block size of the employed hardware texture
compression technique. In our experiment, B is 16 for 3Dc. This
normalization process minimizes the effect of the model scale on
the parameter setting.

Note that our metric only considers the move of the vertex
after compression. Continuity of data is not considered. Therefore,
when handling texture coordinates, our method may fail to repre-
sent the texture seam in the proximity of the continuous surface
because of the compression error. One way to suppress such an
error is to employ weighting on each vertex in Eq. 1 to reduce the
compression error of the vertices near the seams.

Fig. 5: Compression error (RMSE) of Fig. 2 decreases during SA
optimization iterations and finally converges.

5.2 Iterative Optimization

Based on our attribute-space error metric (Eq. 2), our objective
function can be formulated as the following equation:

p∗ = arg min
p
{E(p)}. (3)

Its goal is to determine an optimal permutation p∗ for minimizing
the compression error. Obviously, this is a discrete optimization
problem in the permutation space. Solvers for optimization prob-
lems are usually designed for continuous space and hence are not
applicable to our problem. Smith et al. [37] attempted to transform
permutation space problems into continuous space with sorting
operations. Unfortunately, sorting in each optimization iteration
is very time consuming. In our work, we exploit the simulated
annealing (SA) algorithm [38] to solve this discrete optimization
problem because it can easily be adapted to the permutation
space. Moreover, as SA is GPU friendly, it can be significantly
accelerated using the GPU. Details about GPU implementation
for SA are discussed in the next section.

During every iteration of our optimization, given a texture
of vertex data with an arrangement p, we randomly swapped 2
pixels in the texture to produce a new arrangement p′. Note that
these 2 pixels must belong to two different blocks; otherwise,
the error remains unchanged. Then, we calculated our metric to
decide whether we should accept or reject this new arrangement.
Obviously, if the compression error is reduced using p′, we can
use p′ for the next iteration. Even if the compression error is
slightly increased using p′, we can still accept p′ with an iterative-
varying acceptance probability P . Otherwise, p′ is rejected, and
the original arrangement p is retained for the next iteration.
The above procedures are repeated until all variations of the
compression error are smaller than a threshold δ in K consecutive
iterations.

In our experiments, we compute the acceptance probability
P of SA using the Boltzmann distribution, exp(−∆E(p, p̃)/T),
where T denotes temperature, defined as kαT0. The two parame-
ters k and α control the decreasing speed of T . We empirically set
k = 0.991, α = n/10, where n is the number of iterations,
and initialize T0 with the average error value E(p0) of the
initial arrangement p0 in Eq. 2. The ending criterion δ is set
to 1

2000E(p0), and K is set to 5000 for stability. Fig. 5 shows
that the RMSE value of Fig. 2 decreases gradually during the SA
optimization iterations and finally converges.

5.3 Initial Arrangement

An initial guess of the solution is essential to begin the optimiza-
tion. In our case, the error mainly comes from quantization. Note
that the maximum quantization error for each block depends on

5

the largest and smallest values in the block. If all values in a block
are bounded in a smaller range, the bound of the quantization
errors will also be smaller.

Based on this analysis, we obtain an initial arrangement by
greedily grouping the closest vertex data iteratively based on their
L2 distance. The size of each group is equal to the block size
B of the selected texture compression technique. First, we select
an arbitrary vertex as a reference and assign B − 1 vertices with
shortest distance to this reference for grouping. Then, we select
another unassigned vertex as a new reference. In general, this
reference vertex can be selected randomly. An alternative method
is to select a vertex as the nearest unassigned vertex to the last
block. Thanks to the SA optimization process, according to our
experiment, the selection does not greatly affect the final result.
With this new reference, we can search for another B − 1 nearest
neighbors among the unassigned vertices. This step is repeated
until all vertices are assigned to a group.

Note that this greedy search does not guarantee that the
optimal arrangement will be obtained. However, it is a good initial
guess for the optimization process discussed in earlier sections.

5.4 Rendering with Compressed Texture
To render the compressed data in real-time in the graphics ren-
dering pipeline, we need to first upload the compressed texture to
the GPU using texture functions (e.g., glTexImage2D()). Then, we
composite the 2D texture coordinate (u, v) of the facelist to 1D
data (v × width + u) and store it in the generic vertex attribute
arrays using glBufferData(). This composition step allows us to
pack the texture coordinate into one 4-byte integer variable of
the vertex array in OpenGL. Then, glVertexAttribPointer() can be
used to bind the arrays into the variables of the vertex shader.
By invoking the rendering function (e.g., glDrawArrays()), we
can specify the geometric primitives in the facelist. For instance,
we can specify each triplet of the elements in the facelist as
a triangle. Subsequently, a vertex shader is used to access the
uploaded texture with the coordinate stored in the facelist. The
decompression of the texture is performed directly within the tex-
ture lookup functions of the shader (texture2D()). Listing 1 shows
an example of our vertex shader that handles the compression
of the vertex position. It is similar to the shader (Listing 2) of
traditional rendering. Finally, OpenGL automatically reconstructs
the primitives based on the value of the gl Position.

i n u i n t index ;
un i fo rm u i n t width ;
un i fo rm sampler2D tex ;
vo id main () {

vec2 coord = { index % width , index / width } ;
g l P o s i t i o n = MVPMatrix ∗ t e x t u r e 2 D (tex ,coord) ;

}

Listing 1: The vertex shader of our method.

i n vec3 vertex ;
vo id main () {

g l P o s i t i o n = MVPMatrix ∗ vertex ;
}

Listing 2: The vertex shader of traditional rendering.

5.5 GPU Implementation
Our SA optimization process is fully implemented on the GPU. It
is particularly simple and efficient to speed up by parallelism in
our case because our objective function is based on an aggregation
of compression errors from independent blocks. More specifically,
for each iteration in our optimization, we first randomly group all

Fig. 6: Parallel implementation of our method. We first randomly
group blocks into pairs (marked in the same colors) and randomly
swap a pair of elements for each group in parallel.

(a) Original model (b) Zoom-in of (a) (c) Compressed

Fig. 7: “Teapot in a stadium” problem. A small model with very
fine details in a big scene.

blocks into pairs and then randomly select a pair of pixels in
each group for swapping (Fig. 6). The error metric is evaluated to
determine if the swapping is accepted or rejected in each group
individually. Because the swapping occurs only to a specific block
pair, the operation is independent and well suited for paralleliza-
tion. To maximize the scale of parallel processing, we set the block
size B in our optimization exactly as in the employed texture
compression technique because B is also the minimum block size
at which swapping affects the error metric. Hence, the maximum
number of parallel groups #block

2 can be achieved. In this manner,
we improve the efficiency of the SA process significantly.

6 VERTEX CLUSTERING

Although our permutation method drastically reduces the com-
pression error, the quantization involved still produces errors and
affects the visual quality in the “Teapot in a stadium” problem.
This occurs when a small model with fine details is placed inside
a relatively large scene. As an example, a table set (Fig. 7) with
very minute details is placed on top of a large coarse platform.
When quantization is applied on this model, most of the details on
the table are lost. To address this problem, we further propose a
clustering approach.

Depending on the nature of the scene and application, one can
choose any clustering method to group the vertices. In this paper,
we use the simplest clustering method, k-means clustering, to
demonstrate that even the simplest method can provide significant
improvement of visual quality in the final results.

The distance used for clustering is the L2 distance of the input
vertex data (Fig. 8). Data in different clusters can be packed into
the same texture. Note that swapping is allowed only between
blocks in the same cluster. This avoids mixing vertices with
different scales in the same block and reduces the possibility
of serious quantization error. Fig. 12(d) shows the results of
compressing meshes in the “Teapot in a stadium” problem using
our method of clustering.

Fig. 9 plots the compression error of Fig. 12 during the
optimization process with different numbers of clusters, such as
1, 2, and 8. The error is reduced when the number of clusters
is increased. This improvement affects the visual quality of the

6

Fig. 8: Vertex clusters on 3D models.

Fig. 9: The compression error plot of Fig. 12 with different
numbers of clusters during SA optimization.

compressed models with limited cost and accelerates the opti-
mization step because the number of possible swaps is limited by
the clusters.

Note that this vertex clustering is performed on the vertex data
only. The connectivity of the 3D model is not affected. Hence, we
can avoid strong artifacts such as cracks between clusters.

Because the number of clusters is usually small (not more
than 16), we can represent the cluster label using only 4 bits. To
extend Listing 1 for supporting clusters, we can first composite
the 2D texture coordinate (u, v) and the cluster label (c) to 1D
data ((v × width + u) × clusterNum + c). This allows us to
pack all necessary labels into one 4-byte integer variable. Then,
we upload the scales and the offsets of the clusters to the vertex
shader. Listing 3 shows the extended version of the vertex shader
for handling the compressed position.

i n u i n t index ;
un i fo rm u i n t width ;
un i fo rm u i n t cluster_Num ;
un i fo rm vec3 scale [clusterNum] ;
un i fo rm vec3 offset [clusterNum] ;
un i fo rm sampler2D tex ;
vo id main () {

u i n t c_Id = index % clusterNum ;
u i n t index2 = index / clusterNum ;
vec2 coord = { index2 % width , index2 / width } ;
g l P o s i t i o n = MVPMatrix ∗ (t e x t u r e 2 D (tex ,coord) ∗ ←↩

scale [c_Id] + offset [c_Id]) ;
}

Listing 3: The vertex shader of our method with clustering.

7 RESULTS AND DISCUSSION

To thoroughly verify the capability and effectiveness, a series
of experiments is performed to test our proposed method in
various perspectives. These experiments include evaluations of the
rendering quality or time performance when applying our method
to different vertex attributes, different coordinate systems, large-
scale models, and different hardware texture compressions.

For comparison with existing methods without bias, we seek
compression techniques that can preload compressed data to the

GPU memory and perform real-time decompression solely on the
GPU within the graphic rendering pipeline. To the best of our
knowledge, only the methods proposed by Purnomo et al. [1]
and Lee et al. [25] fulfill these requirements. Thus, we conducted
experiments to compare their method with ours. All experiments
were conducted on a PC equipped with an Intel Core i7-6700
3.4GHz CPU, 16 GB RAM, and an nVidia GeForce GTX780
GPU.

7.1 Comparison with Other Methods
In the first experiment, we apply our method to several commonly
used vertex attributes, including positions, normals, and texture
coordinates. In each case, we compress the mesh with or without
permutation and compare the rendering results. We also include
the corresponding results of [1]. To permit fair comparisons, we
consistently use 12 bpv for 3D data and 8 bpv for 2D data for
compression for all methods shown. The bit allocated for [1] is
(5:5:2) in Fig. 2, with 4 bits for each dimension in Figs. 10-13.

Fig. 2 and 12 show the rendering results when the position
data are compressed. In addition to the position data, we compress
the normals (Fig. 10) and texture coordinates (Fig. 11) for various
models. For Fig. 13, we compress both position data and normal
data with a single facelist. From the experimental results, it is
obvious that our proposed approach outperforms the previous
method [1] for both 12 bpv and 8 bpv. One possible explanation
for the poor results of the previous method is that the precision
of geometry is insufficient to handle the “Teapot in a stadium”
problem.

Next, we compare our method with [25]. As our method does
not have the flexibility to choose the precision of geometry or
bit per vertex because of the limitation of hardware compression,
we compare our method with [25] in two different cases. We
manually select the number of their partitions to obtain results with
(i) comparable distortion in terms of RMSE and (ii) comparable
size in terms of memory. Here, we use 12 bpv for 3D data and 8
bpv for 2D data for quantization. Fig. 15 shows the comparison
in these two cases. Although [25] can obtain results with similar
visual quality as ours using a large number of partitions, each
partition consumes 16 bytes of extra memory and thus requires
10% to 300% more memory space than our method. When there
are fewer partitions, their visual quality is lower than ours. Most
importantly, hardware decompression is faster than decompression
in a shader. Thus, our proposed approach still outperforms their
method.

The majority of existing geometry compression methods solely
target a single manifold mesh. Multiple meshes must be han-
dled separately. By contrast, our method can handle scenes with
multiple disconnected meshes simultaneously. To demonstrate this
capability, we render different scenes with the position data and
normal data compressed with a single facelist. Fig. 12 and Fig. 14
show the rendering results for scenes using our method.

7.2 Performance Statistics
Table 1 presents all statistical data for the performance of our
method collected from our experiments. Our method achieves
a compression ratio of 1:7 to 1:8 (because of the overhead).
Note that the data size in the table is the size of the vertex
data preloaded in the GPU memory. Although the facelists are
also cached inside the GPU memory by OpenGL, the size of
the facelist is not included because the main focus of our study

7

(a) Original (b) Purnomo et al. [1] (c) Without permutation (d) Our result

Fig. 10: The rendering results for a 3D model with normal data compressed. All methods here use 12bpv.

(a) Original (b) Purnomo et al. [1] (c) Without permutation (d) Our result

Fig. 11: The rendering results for a 3D model with texture coordinate compressed. All methods here use 8bpv.

(a) Original (b) Purnomo et al. [1] (c) Without permutation (d) Our result with 8 clusters

Fig. 12: The rendering results for a 3D model with position data compressed. All methods here use 12bpv.

(a) Original (b) Purnomo et al. [1] (c) Without permutation (d) Our result

Fig. 13: The rendering results for a 3D model for which position and normal data are compressed. All methods here use 24 bpv.

(a) Original (b) Compressed

(c) Original (d) Compressed

Fig. 14: The rendering results of scenes with compressed data.

is the compression of vertex data. For compression quality, in
addition to a visual comparison of the rendering results, we
employ the RMSE metric for the attribute data and peak signal-
to-noise ratio (PSNR) metric for the rendered data. To measure
PSNR, we sample the rendering results from different viewing
angles and average them; all background pixels are ignored. Our
method clearly achieves much lower RMSE and much higher
PSNR values than compression without permutation (marked as
naı̈vely in Table 1).

In terms of efficiency, the rendering speed is obviously in-
creased by the traditional preloading data method (storing data
in VBO). Our permutation takes several minutes for a model,
although it saves the memory resources of the GPU without
significantly affecting its rendering speed.

8

Fig. 2 Fig. 10 Fig. 11 Fig. 12 Fig. 13

Similar error
(RMSE)

Lee et al. [25]

9000 partitions 480 partitions 300 partitions 6000 partitions 7000 partitions
561.15KB 59.39KB 6.14KB 322.56KB 324.06KB

Similar size
Lee et al. [25]

16 partitions 32 partitions 4 partitions 32 partitions 32 partitions
419.84KB 52.22KB 3.07KB 228.35KB 105.47KB

Our results

419.84KB 52.22KB 3.07KB 228.35KB 105.47KB

Fig. 15: Comparison of the rendering results and memory consumed in [25] and our method. The partition numbers of [25] were
manually selected to obtain comparable distortion (first row) or memory size (second row) to permit a fair comparison.

TABLE 1: Statistics of our method for various models
Figure no. Fig. 2 Fig. 10 Fig. 11 Fig. 12 Fig. 13
Attribute type Position Normal Texture Coord. Position Position + Normal
of element 286,678 35,305 2,650 156,013 35,947
of dimension 3 3 2 3 6
Original vertex data size 3359.74KB 413.70KB 20.48KB 1827.84KB 842.75KB
of cluster 1 1 1 1 8 1
RMSE (Initial) 2.39× 10−6 1.21× 10−5 4.76× 10−5 3.79× 10−5 2.44× 10−5 4.01× 10−7

RMSE (Final) 1.84× 10−6 8.34× 10−6 1.20× 10−5 2.00× 10−5 1.46× 10−5 2.88× 10−7

Time for permutation 8.4mins 2.2mins 0.2mins 27.8mins 8.9mins 1.0mins
FPS (Traditional rendering) 17.85 147.36 1572.57 32.45 175.19
FPS (Preloading) 970.87 4178.85 6850.49 2558.09 4100.28
FPS (Ours) 966.18 4096.68 6732.87 2305.92 2292.70 4022.53
Compressed size ([1]) 419.84KB 52.22KB 3.07KB 228.35KB 105.47KB
Compressed size ([25]-Similar error) 561.15KB 59.39KB 6.14KB 243.71KB 322.56KB 324.06KB
Compressed size ([25]-Similar size) 419.84KB 52.22KB 3.07KB 228.35KB 228.35KB 105.47KB
Compressed size (Ours) 419.84KB 52.22KB 3.07KB 228.35KB 228.35KB 105.47KB
Bit per vertex (Ours) 12 12 8 12 12 24
PSNR ([1]) 10.05 40.81 13.47 8.02 20.02
PSNR ([25]-Similar error) 24.62 59.93 23.06 16.34 16.37 40.97
PSNR ([25]-Similar size) 12.28 50.56 13.33 9.51 14.53 25.87
PSNR (Naı̈vely) 11.87 43.87 13.43 15.04 17.76
PSNR (Ours) 23.12 57.81 23.24 17.73 20.93 31.62

7.3 Data with Different Coordinate Systems

Although our error metric (Eq. 2) is defined in a Cartesian coordi-
nate system, our method can be directly applied to the compression
of data in other coordinate systems, such as polar coordinates for
position data and spherical coordinates for normal data. Fig. 16
shows the rendering results for a compressed mesh under different
coordinate systems. To compress the toroids positional data, the
quality of the result in Cartesian coordinates (Fig. 2) is comparable

to that of its counterpart in polar coordinates (Fig. 16(a)). How-
ever, when applied to normal compression, the use of spherical
coordinates added slight noise to the result because 3D data are
stored in 12 bpv, whereas 2D data are stored in 8 bpv only. Thus,
the compression quality is lower when a 2D coordinate system is
used, although the difference is not visually apparent.

9

(a) Polar coordinate (Position) (b) Spherical coordinate (Normal)

Fig. 16: Rendering results for compressed data with different
coordinate systems.

C
om

pr
es

se
d

m
od

el

C
om

pr
es

se
d

af
te

r
si

m
pl

ifi
ed

to
75

%

C
om

pr
es

se
d

af
te

r
si

m
pl

ifi
ed

to
25

%

C
om

pr
es

se
d

af
te

r
si

m
pl

ifi
ed

to
5%

Fig. 17: Our method can accept simplified models with various
degrees of simplification as input and obtain acceptable rendering
results after compression.

7.4 Compression of Connectivity Data

Although this paper mainly focuses on the compression of vertex
data, the connectivity data should not be ignored. Here, we provide
two optional methods to reduce the size of connectivity data.

The first approach is to use mesh simplification, which demon-
strates that simplification can be used to reduce the size of
topology data effectively [1]. We employ the idea given in [1]
and simplify the model before our compression. Fig. 17 shows the
rendering results when our compression is applied to models with
different degrees of simplification. Our method can effectively
take the simplified model as input and obtain reasonable quality.

The second approach is to use triangle stripification, a well-
known compression approach in MPEG-4 standard. Stripification
minimizes the connectivity data by representing N triangles (3N
vertices) with 3 + (N − 1) vertices losslessly. As a result, the
size of the facelist is reduced by approximately 3 times. It is an
effective method to reduce the size of connectivity data in the
GPU memory. Most importantly, rendering of triangle strips is
directly supported by OpenGL, although it may not work well for
nonmanifold meshes or a polygon soup.

7.5 Compression of a Large-Scale Model

Our proposed mesh compression approach is especially suitable
for complex and large-scale 3D models because they may easily
reach the limits of GPU memory and processing power. Thus, we
conducted two experiments with large-scale mesh models (Fig. 18)
to evaluate the performance of our method. In the first experiment,
we compressed a large 3D model (merlion) containing more than
13.5 million vertices. The corresponding data size in memory
is nearly 414.9 MB. Without any compression, this model can
be rendered in 32.3 fps using the preloading method. With the
use of our compression method, an average frame rate of 30.4

(a) Original (b) Compressed

Fig. 18: The rendering results of our method for a large 3D model

fps is maintained, while the memory consumption is reduced to
51.9 MB. Thus, our method reduces GPU memory consumption
without sacrificing rendering speed even on large models.

The second experiment investigates the performance trend
of different rendering methods when the number of polygons
increases. We rendered a standard sphere in different resolutions
using various approaches, including traditional rendering, the
preloading method, and our method. Fig. 19 shows the rendering
performance for various combinations of mesh size and methods
in terms of fps. Traditional rendering (blue dash-dot line) is
slowest, as it requires transmitting the vertex data from the CPU
to the GPU 30 times per second. However, it does not place any
demands on the GPU memory size.

Preloading data to the GPU (green dotted line) improves the
rendering speed compared to transmitting data every time. The
drawback is the limited size of GPU memory, which cannot
accommodate vertex data, especially for a large, complicated
scene. In this experiment, there is 1.5 GB of available memory
on the GPU. The preloading method could not further process
data with a size larger than 1.5 GB, as shown in the figure. In
other words, we can only preload a model with less than 49
million vertices. By contrast, our method (red thick line) can
effectively reduce the preloaded data size and render the data
without significantly affecting the rendering speed. Even a model
with 100 million vertices can be preloaded to the GPU.

7.6 Compression with Various HW Techniques
All of the results of our above-mentioned method were com-
pressed using 3Dc. However, our method is not limited to the use
of 3Dc but can support different block-based hardware compres-
sion techniques such as S3TC (4bpv) and BPTC (8bpv). However,
because of the difference in geometric precision, the resultant
compression qualities vary as shown in Fig. 20. Our method
achieves better results when a method with higher geometric
precision is applied.

8 CONCLUSIONS

In this article, we propose a novel method to enable storing of
compressed vertex data in GPU memory and full decompression

10

Fig. 19: Performance trend of rendering speed for models with
different complexities using traditional rendering, the preloading
method, and our method. We plotted log-transformed perfor-
mance (in units of fps) against the data size (in units of MB).

DXT1 (4bpv) BPTC (8bpv)

Fig. 20: Our method supports different block-based hardware
texture compression methods.

on the GPU during real-time rendering. This allows us to regain
memory space on the GPU to store more data without sufficiently
affecting the rendering speed. The key idea is to exploit existing
texture compression techniques embedded inside ordinary graph-
ics hardware for vertex data.

However, naı̈vely compressing the vertex data using texture
compression techniques may not obtain an acceptable result
because the coherence of the vertex data in textures is not
guaranteed. Therefore, our key contribution is the proposal of a
number of methods to increase data coherence. To minimize the
compression error, our proposed method permutes the vertex data
by optimization. Moreover, we further reduce the compression
error by performing vertex clustering. Our experimental results
demonstrate that our proposed method is efficient and effective.

Our method is designed to be compatible with different block-
based hardware texture compression techniques, such as S3TC,
3Dc, and BPTC. We believe that our method is sufficiently general
for different types of vertex data attributes such as color, material,
and BRDF.

There are three limitations of our method. First, our method
relies on the compression circuit within the graphics hardware.
Thus, flexibility in choosing the bitrate, compression ratio, and
performance of our method is limited by the hardware config-
urations. Latest texture compression techniques (e.g., Adaptive
Scalable Texture Compression (ASTC) [39]) cannot be applied
without hardware support on ordinary GPUs. Second, the tex-
ture compression method is often lossy and may generate high-
frequency noise that is more noticeable than low-frequency error.
In the future, we intend to address this problem with real-time
geometry filtering on a GPU. Third, our method may not work
well for multiple vertex attributes that are not highly correlated.

Although it is possible to use different permutations for multiple
attributes using multiple generic vertex attribute arrays, the trade-
off is the increase in the size of the facelist.

As this paper mainly focuses on compression of vertex data,
we intend to further investigate methods for hardware connectivity
data compression in the future. Furthermore, we intend to extend
our method to support animated 3D models. The challenge here
is how to exploit temporal coherence from the vertex data among
frames so that a higher compression ratio can be achieved with the
use of hardware 3D texture compression.

Last but not least, we intend to further investigate different
mesh distortion metrics [40] for better error measurement in our
optimization.

ACKNOWLEDGMENTS

We thank the reviewers for the valuable comments. This
work is supported by Shenzhen Science and Technology Pro-
gram (No.JCYJ20160429190300857), Research Grants Coun-
cil of the Hong Kong Special Administrative Region, under
RGC General Research Fund (Project No. 14200915), Research
Grants Council of the Hong Kong Special Administrative Re-
gion, China (Project Reference No. UGC/FDS11/E03/14), and
Special Fund of Science and Technology Research and Devel-
opment on Application From Guangdong Province (Grant No.
2016B010124011).

REFERENCES

[1] B. Purnomo, J. Bilodeau, J. D. Cohen, and S. Kumar, “Hardware-
compatible vertex compression using quantization and simplification,”
in HWWS ’05: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware. New York, NY, USA: ACM, 2005,
pp. 53–61.

[2] A. Khodakovsky, P. Schröder, and W. Sweldens, “Progressive geome-
try compression,” in Siggraph 2000, Computer Graphics Proceedings,
K. Akeley, Ed. ACM Press / ACM SIGGRAPH / Addison Wesley
Longman, 2000, pp. 271–278.

[3] R. Pajarola and J. Rossignac, “Compressed progressive meshes,” IEEE
Trans. Vis. Comput. Graph., vol. 6, no. 1, pp. 79–93, 2000.

[4] P. Alliez and M. Desbrun, “Progressive compression for lossless trans-
mission of triangle meshes,” in SIGGRAPH ’2001 Conference Proceed-
ings, 2001, pp. 198–205.

[5] J. Kessenich, D. Baldwin, and R. Rost, The OpenGL Shading Language,
June 2010.

[6] I. NVIDIA, NVIDIA CUDA C Programming Guide, 2012.
[7] M. Deering, “Geometry compression,” Computer Graphics, vol. 29, no.

Annual Conference Series, pp. 13–20, 1995.
[8] M. M. Chow, “Optimized geometry compression for real-time rendering,”

in VIS ’97: Proceedings of the 8th conference on Visualization ’97. Los
Alamitos, CA, USA: IEEE Computer Society Press, 1997, pp. 347–ff.

[9] C. Touma and C. Gotsman, “Triangle mesh compression,” in Graphics
Interface, 1998, pp. 26–34.

[10] M. Isenburg, “Compressing polygon mesh connectivity with degree
duality prediction,” in Proc. Graphics Interface, May 2002, pp. 161–170.

[11] L. Vasa and G. Brunnett, “Exploiting connectivity to improve the tangen-
tial part of geometry prediction,” IEEE transactions on visualization and
computer graphics, vol. 19, no. 9, pp. 1467–1475, 2013.

[12] X. Hao and A. Varshney, “Variable-precision rendering,” in I3D ’01:
Proceedings of the 2001 symposium on Interactive 3D graphics. New
York, NY, USA: ACM, 2001, pp. 149–158.

[13] X. Gu, S. J. Gortler, and H. Hoppe, “Geometry images,” in Proceedings
of the 29th annual conference on Computer graphics and interactive
techniques, ser. SIGGRAPH ’02. New York, NY, USA: ACM, 2002,
pp. 355–361.

[14] E. Praun and H. Hoppe, “Spherical parametrization and remeshing,” in
ACM SIGGRAPH 2003 Papers, ser. SIGGRAPH ’03. New York, NY,
USA: ACM, 2003, pp. 340–349.

11

[15] M. B. Rodrı́guez, E. Gobbetti, F. Marton, and A. Tinti, “Compression-
domain seamless multiresolution visualization of gigantic triangle
meshes on mobile devices,” in Proceedings of the 18th International
Conference on 3D Web Technology. ACM, 2013, pp. 99–107.

[16] Z. Karni and C. Gotsman, “Spectral compression of mesh geometry,” in
Siggraph 2000, Computer Graphics Proceedings. ACM Press / ACM
SIGGRAPH / Addison Wesley Longman, 2000, pp. 279–286.

[17] R. Schnabel, S. Mser, and R. Klein, “A parallelly decodeable com-
pression scheme for efficient point-cloud rendering,” in Proceedings
symposium on point-based graphics, 2007, pp. 119–128.

[18] Q. Meyer, J. Süßmuth, G. Sußner, M. Stamminger, and G. Greiner, “On
floating-point normal vectors,” in Computer Graphics Forum, vol. 29,
no. 4. Wiley Online Library, 2010, pp. 1405–1409.

[19] E. Gobbetti, F. Marton, M. B. Rodriguez, F. Ganovelli, and
M. Di Benedetto, “Adaptive quad patches: an adaptive regular structure
for web distribution and adaptive rendering of 3d models,” in Proceedings
of the 17th international conference on 3D web technology. ACM, 2012,
pp. 9–16.

[20] B. Jovanova, M. Preda, and F. Preteux, “Mpeg-4 part 25: A generic
model for 3d graphics compression,” in 2008 3DTV Conference: The
True Vision-Capture, Transmission and Display of 3D Video. IEEE,
2008, pp. 101–104.

[21] K. Mamou, T. Zaharia, and F. Prêteux, “Tfan: A low complexity 3d
mesh compression algorithm,” Computer Animation and Virtual Worlds,
vol. 20, no. 2-3, pp. 343–354, 2009.

[22] M. Luffel, T. Gurung, P. Lindstrom, and J. Rossignac, “Grouper: A
compact, streamable triangle mesh data structure,” IEEE transactions
on visualization and computer graphics, vol. 20, no. 1, pp. 84–98, 2014.

[23] D. Calver, “Vertex decompression in a shader,” in ShaderX: Vertex and
Pixel Shader Tips and Tricks, 2002, pp. 172–187.

[24] ——, “Using vertex shaders for geometry compression,” in ShaderX2:
Shader Programming Tips & Tricks with DX9, 2004, pp. 3–12.

[25] J.-S. Lee, S.-Y. Choe, and S.-Y. Lee, “Compression of 3d mesh geometry
and vertex attributes for mobile graphics,” Journal of Computing Science
and Engineering, vol. 4, no. 3, pp. 207–224, 2010.

[26] A. Maglo, G. Lavoué, F. Dupont, and C. Hudelot, “3d mesh compression:
Survey, comparisons, and emerging trends,” ACM Computing Surveys
(CSUR), vol. 47, no. 3, p. 44, 2015.

[27] S.-E. Yoon, P. Lindstrom, V. Pascucci, and D. Manocha, “Cache-
oblivious mesh layouts,” in ACM Transactions on Graphics (TOG),
vol. 24, no. 3. ACM, 2005, pp. 886–893.

[28] M. Tchiboukdjian, V. Danjean, and B. Raffin, “Binary mesh partitioning
for cache-efficient visualization,” Visualization and Computer Graphics,
IEEE Transactions on, vol. 16, no. 5, pp. 815–828, 2010.

[29] I. ATI, Radeon X800: 3Dc White Paper. Tech. rep., 2005., 2005.
[30] I. S3, S3TC: White paper, 1999.
[31] ARB Texture Compression Bptc, 2010.
[32] J. E. Lengyel, “Compression of time-dependent geometry,” in Proceed-

ings of the 1999 symposium on Interactive 3D graphics, ser. I3D ’99.
New York, NY, USA: ACM, 1999, pp. 89–95.

[33] J. Chhugani and S. Kumar, “Geometry engine optimization: cache
friendly compressed representation of geometry,” in Proceedings of the
2007 symposium on Interactive 3D graphics and games, ser. I3D ’07.
New York, NY, USA: ACM, 2007, pp. 9–16.

[34] P. Lindstrom and G. Turk, “Image-driven simplification,” ACM Transac-
tions on Graphics, vol. 19, no. 3, pp. 204–241, 2000.

[35] M. Garland and P. S. Heckbert, “Simplifying surfaces with color and
texture using quadric error metrics,” in IEEE Visualization ’98, D. Ebert,
H. Hagen, and H. Rushmeier, Eds., 1998, pp. 263–270.

[36] H. H. Hoppe, “New quadric metric for simplifying meshes with ap-
pearance attributes,” in IEEE Visualization ’99, D. Ebert, M. Gross, and
B. Hamann, Eds., San Francisco, 1999, pp. 59–66.

[37] R. E. Smith and D. Holtkamp, “A representation for permutation opti-
mization with a combinatorial genetic algorithm,” 2007.

[38] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simu-
lated annealing,” Science, Number 4598, 13 May 1983, vol. 220, 4598,
pp. 671–680, 1983.

[39] J. Nystad, A. Lassen, A. Pomianowski, S. Ellis, and T. Olson, “Adap-
tive scalable texture compression,” in Proceedings of the Fourth ACM
SIGGRAPH/Eurographics conference on High-Performance Graphics.
Eurographics Association, 2012, pp. 105–114.

[40] M. Corsini, M.-C. Larabi, G. Lavoué, O. Petřı́k, L. Váša, and K. Wang,
“Perceptual metrics for static and dynamic triangle meshes,” in Computer
Graphics Forum, vol. 32, no. 1. Wiley Online Library, 2013, pp. 101–
125.

Kin Chung Kwan Kin Chung Kwan (KC) is now
a research fellow at the School of Computing
and Information Sciences in Caritas Institute of
Higher Education, Hong Kong. He received his
B.Sc., and Ph.D. degree in the Department of
Computer Science and Engineering from The
Chinese University of Hong Kong in 2009 and
2015 respectively. His research interests include
computer graphics, real-time rendering, non-
photorealistic rendering, GPGPU, and shape
analysis.

Xuemiao Xu Xuemiao Xu received her B.S.
and M.S. degrees in Computer Science and
Engineering from South China University of
Technology in 2002 and 2005 respectively, and
Ph.D. degree in Computer Science and Engi-
neering from The Chinese University of Hong
Kong in 2009. She is currently a professor
in the School of Computer Science and En-
gineering, South China University of Technol-
ogy. Her research interests include object de-
tection&tracking&recognition, and image&video

understanding and synthesis.

Liang Wan Liang Wan received the B.Eng and
M.Eng degrees in computer science and engi-
neering from Northwestern Polytechnical Univer-
sity, P.R. China, in 2000 and 2003, respectively.
She obtained a Ph.D. degree in computer sci-
ence and engineering from The Chinese Univer-
sity of Hong Kong in 2007. She is currently an
Associate Professor in the School of Computer
Software, Tianjin University, P. R. China. Her
research interest is mainly on intelligent image
synthesis, including image-based rendering, im-

age navigation, pre-computed lighting, and panoramic image process-
ing.

Tien-Tsin Wong Tien-Tsin Wong received his
B.Sc., M.Phil. and Ph.D. degrees in Computer
Science from the Chinese University of Hong
Kong in 1992, 1994, and 1998 respectively. He is
currently a professor in the Department of Com-
puter Science and Engineering, the Chinese
University of Hong Kong. His main research
interests include computer graphics, computer
vision, computational perception, computational
manga, GPU techniques and image-based ren-
dering. He received the IEEE Transactions on

Multimedia Prize Paper Award 2005 and the Young Researcher Award
2004.

Wai-Man Pang Wai-Man Pang (Raymond) is
now an associate professor at the School of
Computing and Information Sciences in Caritas
Institute of Higher Education, Hong Kong. He
was with the Computer Graphics Lab, University
of Aizu, Japan from 2009 to 2011 as an assistant
professor. He finished his postdoctoral fellowship
and Ph.D study at the Department of Computer
Science and Engineering at CUHK. His current
research interests are two folds, one is on graph-
ics related techniques and the other is health-

care related applications. Topics include texture analysis, vision based
recognition, image feature extraction, computational manga, hardware
accelerated algorithms and health care technologies on mobile devices.

